2 h% n4 k$ g; O" S 重归酒鬼的问题。假如这个酒鬼是站在距离悬崖边1步的位置,我们可以想像成是有人故意把他带到这个位置,然后撒手不管他了这种情况,也可以看作是酒鬼当漫步到这个位置时,我们开始来考察他。接下来,这个酒鬼开始漫步!那么,问题来了,他掉下悬崖的概率是多少呢?为了让过程变得更加简明容易理解,当然是更容易考察,我们再假设酒鬼的随机漫步是在一维空间进行,即,只向靠近悬崖和远离悬崖方向行走,可以想像成一个既不能上、也不能下,也不能左行、也不能右行的封闭胡同里行走,一连是悬崖,一连是没有尽头的安全地带,哈哈。。。。科学需要假设,不要抬杠现实里有没有这样一条胡同,这里只是想把问题简化。 4 W- ?7 C) S# L( ^6 \% c) }5 w m: X z4 M6 A) t
按照上面的简化,现在的问题变成了一维的空间。假设,悬崖所在的点为0(可以把这个一维空间看成是一条直线,也可以看成是平面坐标系的X轴原点位置),那么,是不是随机变量的值一旦达到0,酒鬼就掉下悬崖了?这里我来提个问题:设,酒鬼向右走(远离悬崖方向)的p概率为2/3,向左走(靠近悬崖方向)的概率1-p为1/3,那么,酒鬼从1所在的点做酒鬼漫游运动,他有多大的概率会掉下悬崖(别跟我说酒鬼向左向右走的概率都是1/2,我们现在是在假设)? . D8 B N' ^1 l; p5 q7 V" t7 v% ]* V 7 U1 X1 ^/ l* J- Z4 o% e5 H9 c) q3 t4 n. M; C3 B
$ W M/ V, P: |" C& o- L6 R; Y% V
7 t5 D8 n: C" P5 s' o哈哈。。。。这么简单的问题也拿来考我啊,这不侮辱我的智商吗?酒鬼从1的地方只要向左走1步就掉下去了,向左走的概率是1/3嘛,这不明显掉下悬崖的概率是1/3吗?. h1 K$ k6 _8 Z% ^' S+ b9 W
: W( q! `& Y& Z" _9 d 好的,答案收到!如果你真的只是这样来考虑问题的话,我现在是真的想侮辱下你的智商了!答案果真如此吗?我承认,你的思维很正常,但这里的1/3是他头一步出脚方向的概率!如果我这样问,这个酒鬼第1步掉下悬崖的概率是多大?恭喜你,你答对了。但我没这么问好吧!这里的情况非常复杂的。比如,他第一步向右走,第二步又向右走,然后接着左行3步,掉下去没有?!这也就是说,即使酒鬼漫步到了3的地方,又或者离悬崖更远的位置,他仍然有掉下悬崖之可能,对不对?第一步掉下悬崖的概率为1/3,如果第一步没掉下去,我们就要加上第二步掉下悬崖的概率,当然第二步又没掉下去,我们还要加上第三步掉下悬崖的概率。。。。。这样,这个酒鬼掉下悬崖的概率无论如何,都是要大于1/3的!! Q' |( o. c. m
4 y- N7 e/ M H' i" c7 A 设酒鬼从1的地方掉下悬崖的概率为P1,那么,这个概率就是我们要求解的答案,即酒鬼从1的地方漫步掉下悬崖的概率了。当然,P1也可以是酒鬼从任意位置k漫步到k-1位置的概率。(k-1)表示左移一步。值得注意的是,酒鬼走1步与位置移动1格的不同。酒鬼从k到k-1虽然只有1格,但实际走起来可能要很多步。再把2的地方漫步跃落悬崖的概率写作P12(因为酒鬼如果第1步没掉下悬崖而漫步到了2的地方),把从3的地方小叔跌落悬崖的概率记作P13。。。。。。把从n的地方小叔跌落悬崖的概率记作P1n。。。。。。不难得到如下等式: 4 m& A/ m( f! _. b+ b. N* }; J, A/ G I- t7 H: C7 d1 ~ P1=1-p+pP12 + w7 \! p6 M3 |+ [. Z) A/ \) h3 R& [9 s
由此可以解出P1=1,或者P1= (1-p)/p ; N, Y0 ]$ G* E. o, Y5 ? : I7 _5 C/ S/ E j5 h. j7 O5 M 从上式不难看出,当p=1/2时,P1=1,我们知道,P1=1说明酒鬼就跃入悬崖了;当p小于1/2,P1>1(Pn的情形也是一样的),可以概率最大值只能是1了,p是酒鬼向右(就是朝悬崖反方向或者远离悬崖方向游走的概率)。所以,如果酒鬼朝远离悬崖的方向的概率小于1/2的话,无论他从哪个点开始游走,酒鬼最终是必然要掉下悬崖的。如果p=2/3,P1=1/2,Pn=(1/2)n!这里我们看到,n的值越大,即酒鬼初始点离悬崖越远,他掉进悬崖的可能性也就会越小!/ r$ f+ b: i* T p+ E% N
8 w; [% O+ Y3 S. N, T) T
上面说的是无规行走在酒鬼失足上的具体应用。借着这个问题,我们还可以运用在赌徒破产问题上。赌徒破产问题也叫赌徒输光定理。为了简化问题,我直接引用一段百度百科现成的描述:“概率论所提供的有趣定理:在“公平”的DU博中,任一个拥有有限赌本的赌徒,只要长期赌下去,必然有一天会输光。在一次DU博中,任意一个赌徒都有可能会赢。谁输谁赢是偶然的。但只要一直赌下去,输光或者庄家破产跑路是必然的。”详细的论证过程我这里就省略了,大家可以搜一下答案,也可以参照上面的酒鬼失足问题,论证过程大同小异。# ?+ Q% {" r# V$ x; ]) D
: r* \( m7 t% }0 [' N% O1 o" M
赌徒破产 ; h" [& [# Q- e4 q$ z$ M$ ^
0 D6 I3 X6 c \, J/ t
概率问题的最初定向研究,缘于游戏。时至今日,概率学的研究已经相当深入,许多问题已经得到正确的解,例如无规行走。无规行走是一个数学模型,其应用范围非常之广,酒鬼漫步失足悬崖是肯定的,不管你如何来描述它都是如此。现在来说赌徒破产问题,这实质也是无规行走的一个例子。假定我们中间有这么一员(当然是赌徒了)在线上或是线下菠菜,赢的概率是p,输的概率就是(1-p),每次的赌注为1元,初始本金是n元,胜了注码加1元,输了注码减1元。现在的问题是,赌徒输光所有本金的概率是多少?这个问题就是无规行走,跟前面我们说的酒鬼失足问题可以看作是同一个数学模型。本金n相当于酒鬼离悬崖的位置,本金越大,离悬崖越远。掉下悬崖的地方,即是赌徒本金清光的时刻。答案也已经有了,即当赌徒胜率p=1/2时,我们是必然会输光本金的!$ J' I; u0 t n; |9 N( T7 p
9 I: a! H% e' y9 j$ I; Q) h 平注必输) {+ Y q8 e( H8 x/ M9 l
5 M; k: j8 j! E" e2 n: E8 t 我们所玩的游戏,即使是1/2机会类的游戏,如百家乐,龙虎,轮盘大小、单双等,实际上除去抽水之后,是会比1/2胜率输钱更多的。因此,我们得到结论:平注必输!我叫它为平注必输定理,可谓毫无争议!兄弟们,请注意,自本文出炉之日起,不要再为平注是否能战胜庄家这样的问题争论不休了,前面已经作了严谨的证明。 * g# u4 t: T9 @& _+ E- p % q6 d6 y% _0 c9 i2 K g 酒鬼失足问题,我们还可以运用到胜率上来,即胜率必然回归!这无关我们前面是从什么位置开始的。比如,我们已经净胜了6手,那么,后面不管胜率如何走向,最终必然能再次回到净胜6手的位置上来!这个问题还可以这样来理解酒鬼失足问题,我们先作个小变换。如果前面说到的酒哥所在的地方根本没有悬崖呢?比如,在一望无际的沙漠,在一马平川的平原等,而且能走的路也能无限延展,没有尽头这样子的场景。现在的问题是,酒哥从家里出发(可能喝高了想出去吹吹风或者啥的),结果出门就作了个酒鬼漫步。计算下,此哥能最终不借助醒酒回家吗?回家的概率是多少?# ]- j' ]2 J. p! a# f
. j1 U* n e% Y" h/ r1 O
你别说,还真有这么一个数学家闲的没事干研究了这个问题!这个论证过程也不复杂,我们直接引用结论就好了。结论大致是这样的,在一维空间,酒鬼虽然忽前忽后,但酒哥最终是一定能回家的,回家概率100%!但这个时间要足够长,喝得足够多,不要一会儿就醒了哈哈。。。。二维空间的情况也差不多,最终还是能回家的。所以,我们下回喝醉了千万不要怕回不了家,数学已经证明了,可以回家!!但是,后来的证明表明,如果在大于二维空间漫游,回家的概率就会大大降低!比如在三给空间里,如果人长了翅膀啥的,回家的概率就大概只有不足35%!* [ A2 {3 e- D s; t Y
2 K1 M" N9 S/ G6 [4 m% c; B" ?7 H 胜率回归 4 s5 g$ v O, q/ e+ M 4 F- z" S7 y7 b0 F 酒鬼回家问题再次说明,胜率必然回归!游戏嘛,比如百家乐,非胜即负(不考虑和局,和局的胜率非1/2,不作考察),可以看作是一个筹码在一维空间上的一个无规行走,我说明白没?既然是无规行走,那就肯定不用证明了呀,最终的胜率必然是要回到起点的了。但这里说的回归,跟大数法则所描述的完全是两回事哦!我说的“胜率回归”,是一个即时时刻,是一个胜率归于50%的具体位置,一个点!而大数法则描述的是一个趋势!我好像又澄清了一个问题,那就是胜率回归是酒鬼回家问题,而非大数法则问题,虽然受大数法则影响。5 D, t. p; Y0 N, z/ }1 L) S- j; L
! O3 O: G6 q& b" f* F. D 现在问题终于很清晰了,本金,相当于酒鬼失足问题中远离悬崖的距离,离悬崖越远,肯定掉下悬崖的过程越复杂了,也可以说越费时;但是不是费时,要看你每1步的大小而论,即使你离悬崖百步之遥,你以每次100步的幅度作无规行走,结果怎样?所以,注码大小,即是酒鬼作无规得走每步的距离!显然,在本金一定的情况下,注码越小(步幅越小),失足过程越复杂!再强调一遍,不要考虑胜率,也不要试图去改变胜率,因为那完全不可能。游戏的过程就是无规行走的过程,对于胜率而言。如果你想强迫自己中途“醒酒”而改变漫游状态,那还叫无规行走吗?事实上,反正我是做不到,所以我用随机投注法决定投注方向,没毛病吧? u1 q6 z' o3 z g1 f
, ^0 I: N7 p( k0 o! ]1 X* a' e 当然了,酒鬼不可能有翅膀,可是小鸟可以呀!那假如给小鸟喝点酒啥的,让它在三维空间作无规行走,如何?概率学上有这么一句话:喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家!结论一下——我们玩百家乐,乃至任何游戏,其本质就是在拥有本金N的情况下,以注码M为单位,在胜率的一维空间,作无规行走!9 y; ~; O1 E' @( d$ Q' c